1

Executing Reactive, M odel-based Programs
through Graph-based Temporal Planning

Phil Kim and Brian C. Williams
MIT Rm. 37-381
77 Massachusetts Ave.
Cambridge, MA 02139 USA
{kKimwillians}@nmt.edu

Abstract

In the future, webs of unmanned air and space ve-
hicles will act together to robustly perform elabo-
rate missions in uncertain environments. We co-
ordinate these systems by introducingeactive
model-based programming language (RMPRhat
combines within a single unified representation the
flexibility of embedded programming and reactive
execution languages, and the deliberative reason-
ing power of temporal planners. The KIRK plan-
ning system takes as input a problem expressed as
a RMPL program, and compiles it intotampo-

ral plan network (TPN)similar to those used by
temporal planners, but extended for symbolic con-
straints and decisions. This intermediate represen-
tation clarifies the relation between temporal plan-
ning and causal-link planning, and permits a single
task model to be used for planning and execution.
Such a unified model has been described as a holy
grail for autonomous agents by the designers of the
Remote AgeriMuscettolaet al, 19984.

M odel-based Programming

Mark Abramson
Draper Lab
555 Technology Square, MS3F
Cambridge, MA 02139 USA
mabr anson@dr aper. com

through all the plausible situations that might arise, @gco
the appropriate responses within their software and thén va
date that software with high assurance. To break through thi
barrier we need to invent a new programming paradigm.

In this paper we advocate the creatioreafbedded, model-
based programming languageg$-irst, programmers should
retain control for the overall success of a mission, by pro-
gramming game plans and contingencies that in the pro-
grammer’s experience will ensure a high degree of suc-
cess. The programmer should be able to program these
game plans using features of the best embedded program-
ming languages available. For example, reactive synclusno
languagelHalbwachs, 1993 like Esterel, Lustre and Signal,
offer a rich set of constructs for interacting with sensand a
actuators, for creating complex behaviors involving cancu
rency and preemption, and for modularizing these behaviors
using all the standard encapsulation mechanisms. Model-
based programming extends this style of reactive language
with a minimal set of constructs neccessary to perform flexi-
ble mission coordination, while hiding its reasoning capab
ities under the hood of the language’s interpreter or coenpil

Second, we argue that model-based programming lan-
guages should focus on elevating the programmer’s thinking
by automating the process of reasoning about low-level sys-

The recent spread of advanced processing to embedded syém interactions. Many recent space mission failures, such
tems has created vehicles that execute complex missiohs wis Mars Climate Orbiter and Mars Polar Lander, can be iso-
increasing levels of autonomy, in space, on land and in the ailated to difficulties in reasoning through low-level systim

These vehicles must respond to uncertain and often unforgiteractions. On the other hand, this limited form of reason-
ing environments, both with a fast response time and with 4hg and book keeping is the hallmark of computational meth-
high assurance of first time success. The future looks to theds. The interpreter or compiler of a model-based program

creation ofcooperative robotic network$or example, a het-

reasons through these interactions using composable model

erogenous collection of vehicles, such as planes, helicept Of the system being controlled. We are developing a lan-
and boats, might work in concert to perform a search and resguage, called th®eactive Model-Based Programming Lan-

cue during a hurricane or similar natural disaster. In addit
giant space telescopes are being deployed that are composg¢$tem interactions: reasoning about contingenciesdsithe
of satellites carrying the telescope’s different opticainpo-
nents. These satellites act in concert to image planetsidrou state. This paper develops RMPL in the context of contin-
other stars, or unusual weather events on earth.

guage (RMPL)that supports four types of reasoning about
ing, inferring a system’s hidden state and controlling that

gencies and scheduling, whilvilliams et al,, 2001, shows

The creation of robotic networks cannot be supported bynow RMPL is used to infer hidden state.
the current programming practice alone. Recent missidn fai

RMPL offers a middle ground between execution lan-

ures, such as the Mars Climate Orbiter and Polar Landergjuages, like RAPS[Firby, 1999, and highly flexible,
highlight the challenge of creating highly capable velscle operator-based temporal planners,like HYMiscettolaet
within realistic budget limits. Due to cost constraintsasg-
craft flight software teams often do not have time to thinkrency mechanisms of embedded languages, while adding goal

al., 19984. RAPS offers the exception handling and concur-

www.manaraa.com

monitoring, nondeterministic choice and metric constin languages, we need constructs for expressing timing requir
However, RAPS makes its decisions reactively, without adments and alternative choices or contingencies, in thimexa
dressing concerns of schedulability and threat resolutiad ple to use one of two corridors. These constructs are common
hence can fall into a failure state. RMPL incorporates theto robotic execution languadésrby, 1999. However, they
forward looking planning and scheduling abilities of mod- are only used reactively. Kirk must reason forward through
ern temporal planners, but can severely restrict the spice she RMPL program’s execution, identifying a course of ac-
plans considered to possible threads of execution thrdugh t tion that is consistent.
RMPL program. This speeds response and mitigates risk.

The paper begins by introducing a subset of RMPL thatin3 RMPL Constructs
cludes constructs from traditional reactive programmihggp . .
constructs for specifying contingencies and schedulimg co 10 Summarize, RMPL needs to include constructs for ex-
straints. Second, we describe hatirk, an RMPL-based Pressing concurrency, maintaining conditions, syncteani
planner/executive, compiles RMPL programs iéeporal tion, metric constraints and contingencies. The relevant

plan networks (TPN)which compactly represent all possi- RMPL constructs are as follows. We use lower case letters,
ble threads of execution of an RMPL program, and all re-like ¢, to denote activities or conditions, and upper case let-

source constraints and conflicts between concurrent activit®'s: like4 andB, to denote well-formed RMPL expressions:

ties. Third, we present Kirk's online planning algorithmr fo _ a- Invokes primitive activitys, starting at the current time.
RMPL that “looks” by using network search algorithms to This is the basic construct for initiating activities.

find threads of execution through the TPN that are tempo- Asserts that conditioais true at the current time, where
rally consistent. The result is a partially ordered tempora¢ IS @ literal. This is the basic construct for asserting cendi
plan. Kirk then “leaps” by executing the plan using plan exe-ions. o o

cution methodrsamardinot al, 1999 developed for Re- if ¢ thennext A. Starts executingl if condition ¢ is cur-
mote AgenfMuscettolaet al, 19988. Finally, we discuss rently satisfied, whereis a literal. This is the basic construct

Kirk's application to a simulated search and rescue mission for expressing conditional branches and asserting préeond
tions.

. do A maintaining ¢. Executes4, and ensures throughout

2 Example: Cooperative Search and Rescue A that ¢ occurs. T%is is the basic construct for introgucing
maintenance conditions and protections.

A, B. Concurrently executes A and B. It is the basic con-
struct for forking processes.

A; B. Consecutively executes A and then B. It is the basic
construct for sequential processes.

A[l, u]. Constrains the duration of program A to be at least
I and at most:. This is the basic construct for expressing
As part of a search and rescue mission, consider an activitfming requirements.
called Enroute, in which a group of vehicles fly together from choose { A, B}. Reduces non-deterministically to program
a rendezvous point to the target search area. In this agtivit A or B. This is the basic construct for expressing multiple
the group selects one of two paths for traveling to the targestrategies and contingencies.
area, flies together along the path through a series of way- Note that together; andif ¢ thennext A provide the ba-
points to the target position, and then transmits a message 8ic constructs for synchronization, by specifying reqdiaed
the forward air controller to indicate their arrival, whiteait- asserted conditions4, B and A; B provide the neccessary
ing until the group receives authorization to engage thgetar - constructs for building complex concurrent threads.
search area. The “do maintaining” construct offers a building block for

The two paths available for travel to the target area are eacfreating complex preemption and exception handling mech-
only available for a predetermined window of time, which anisms. Note that to fully exploit these mechanisms Kirk
is important to consider when selecting one of these pathgvould need to perform conditional planning. The algorithms
In addition, the timing of the Enroute activity is bound by presented in this paper only address unconditional plannin
externally imposed requirements, for example, the seardh a With this restriction “do maintaining” acts as a maintenanc

rescue mission must complete in 25-30 minutes, with 20% t¢ondition that Kirk must prove holds at planning time.
30% of the time allotted to the Enroute activity. Using these constructs we express the Enroute activity as

Codifying the Enroute activity requires most standard fea[0llOWs:

tures of embedded languages. There are both sequenti@loup-Enroute()[1,u] = {

and concurrent threads of activities, such as going to a se- °"°g5%

ries of way points, and sending a message to the forward air G oup- Fl y- Pat h(PATHL_1, PATHL_2,
controller (FAC), while concurrently awaiting authoriiat. PATHL_3, TAI _PGS) [| *90% u*90% ;
There are maintenance conditions and synchronizatiorns. Fo } mai ntaini ng PATHL_CK,

example, the air corridor needs to be maintained safe during do {

flight, and synchronization occurs with the FAC. R 3 Tl e LT+ b0 nosons :
In addition to constructs found in traditional embedded } maintaining PATH2_OK '

www.manaraa.com

}i activity by expressing the assertion or requirement ofatert

& oup- Tr ansmi t (FAC, ARRI VED_TAI) [0, 2] . conditions by activities that all valid executions mustsfgt
do { For example, consider some of the possible executions of
Gr oup- i t (TAI_HOLDI, TAI _HOLD2) the Enroute activity. One possible execution is that theigro
} WatcLio’n; égO@CEED_m flies along path one (pair 4,5) to the target area in 420 time
} units (seconds in this case), transmits an arrival message t
} the forward air controller (11,12) for one second, and con-

The chooseexpression models the two options for flight currgantly waits (9,10) for another 40 seconds to repeive au-
paths. 90% of the total time of the overall maneuver is gl-thorization to proceed. Another possible execution is that

located to this group flight. Each flight has a maintenancé@fOUP Selects the second path, flies to the target area in 500
condition that the flight path is okay. Arrival is transmiter ~ S€conds, takes 2 seconds to transmit the arrival messade, an

the forward air controller, and receipt of a message to pedce IS 2uthorized to proceed immediately. If it were the casé tha
is concurrently monitored. path one was available from the time at which the Enroute ac-

tivity started to at least the time that the group arrivechat t
target area, then the first execution is valid. This is begdus
4 Temporal Plan Networks satisfies both the temporal constraints on the Enrouteifgtiv

Executing an RMPL program involves choosing a set Ofandthe requirement that path one is available for the durati

;) of the flight along it. The planning algorithm presented ia th
threads of executior{ans, checking to ensure that the ex- e section performs the identification of consistentvtti
ecution is consistent and schedulable, and then schedul

ts on the fly. Iti tial that te these plargecutions.
events on the tly. 1L 1S essential that we generate these plans Temporal Planning Network is a Simple Temporal Net-

quickly. This suggests compiling RMPL programs to a planWork au . . . g
: , augmented wittrsymbolic constraintsaand decision
graph, along the lines of Graphplan or Satpluveld, 1999, .nodes These additions are sufficent to capture all RMPL

and then searching the precompiled graph. However, it ig <, cts given earlier. Like a simple temporal network,
also important for the plan to have the temporal flexibility the nodes of a TPN represent temporal events, and the arcs
offered by a partially ordered, temporal plan. Least cormmit o oot temporal relations that constrain the tempasal d

ment leaves slack to adapt to execution uncertainties and Qe between events. An arc of a TPN may be labeled with
recover from faults. This partial committment is expressed :

in temporal planning throuah Simple Temporal Network a symbolic constraint Tell(p) or Ask(c), as well as a.d.unalio
P h P | 9 9 P K P ; f A Tell(c) label on an arc (i,j) asserts that the condition-rep
(STN]Dechteret al, 1991. Hence, a key observation of . ooy by c is true over the interval between the temporal
our approach is that to build in temporaI.erX|b|I|ty we shaul events modeled by the nodes i and j. Similarly, an Ask(c) la-
E‘gg ﬁg;\%?fr(‘%%aﬁ;igan reprelgse?tatlo?, cag_ii_'le\llmporal bel on an arc (i,j) requires that the condition represented b
t generalization ot an ' _is true over the interval represented by this arc. For exampl
The TPN corresponding to the above Enroute program ig, the Enroute TPN, the Ask(PATH1=OK) label on the arc
shown below. Activity name labels are omitted to keep they 5y yepresents the requirement for path one to be aveilabl
figure clear, but the node pairs 4,5 and 6,7 represent the Wiy the interval of time corresponding to the interval of 6m
Group-Fly-Path activities, and node pairs 9,10 and 11,12 co hepyeen the temporal event modeled by node 4 and node 5.

respond to the Group-Wait and Group-Transmitactivities, ' These Ask-type symbolic constraints allow for the encoding
spectively. Node 3 is a decision node that represents a€hoig¢ onditions in the network.

between two methods for flying to the search area. The TPN' paigion nodes are used to explicitly introduce choices in
represents the consequences of the constraint that themiss activity execution that the planner must make. For example,

last between 25 and 30 minutes. It also models the deCISIOﬁJ.l the Enroute activity there are two choices of paths for the

between the two paths to the target area, and it models tf’@roup to use for flying to the target area, path one and path

restrictions that each of the paths can only be used if they ar, “The activity model captures the two choices as out-arcs

available. 450540) of node 3 of the enroute TPN. This decision node is des-
»(2) ignated by a double outline and dashed out-arcs. All other
nodes in the Enroute TPN are non-decision nodes.

Ask (PATH1=0K) Ask (PROCEED=0K)

' @ [0,0]
[405.456] [0,0] [0,0] [0.54] [0,0]

N\ AW 5 Compiling RMPL to TPN

@ Given a well formed RMPL expression, we compile it to a
o (001 10.0] o Q [0,04] TPN by mapping each RMPL primitive to a TPN as defined
[405.486] 1021 below. RMPL sub-expressions, denoted by upper case letters
A TPN encodes all feasible executions of an activity. Itare recursively mapped to equivalent TPN:
does this by augmenting an STN with two types of con- A[l,u]. Invoke activity A betweer andwu time units.

straints: temporal constraints restrict the behavior obean Astat Aend
tivity by bounding the duration of an activity, time between [l,u] '
activities, or more generally the temporal distance betwee Q—>Q

two events. Symbolic constraints restrict the behaviorrof a

www.manaraa.com

c[l, u]. Assert that condition is true now until[l, u]. thread it constrains the time ranges over which path one is
available (nodes 14-15) and over which the vehicles may per-
/ fl.u] \ form search (nodes 16-17).

_ Tellc)

if c thennext A[l, u]. ExecuteA for [I,], if conditionc is
currently satisfied.

A.starnt A.end

Qﬂw [I’U] m
Ask(9 S~

do A[l,u] maintaining c. ExecuteA for [1,u], and ensure ‘

12002001

throughout4 thatc occurs. The output of the planner consists of a set of paths through
Astat Aend the input network from the start-node to the end-node of the
AN [y top-level activity. In the example the paths s-1-3-4-5-8-9
‘\/ Q 10-13-2-e and s-14-15-16-17-e define a consistent executio
Ask(c) The first path defines the execution of the group of vehicles,
Ally,u1], Bll2,us]. Concurrently execute A fofl;, u;] and the second path defines the “execution” of the rest of the
and B for([lz, us]. world in terms of the assertion or requirement of relevami-co

ditions over the duration of the scenario. The portion of the
TPN not selected for execution is shown in gray.
[y, Planning involves two interleaved phases. The first phase
resembles a network search that discovers the sub-network
Q\B-Sta" 1o B.end [0.0] ,that constitute a feasible plan, while incrementally dtireg
[0,0] z ' for temporal consistency. The second phase is analogous to
p Yy p g
the repair step of a causal link planner, in which threats are
g A[l1]=“1]?B[l2=“2]- Execute A for[l;,ui], then B for qetected and resolved, and open conditions are didad,
(2, U2 . 1994]

A.start A.end
(11,

A.star]]A.end

f1u [0,0]

B.stat B.end 6.1 PhaseOne: Select Plan Execution

flzu The first phase selects a set of paths from the start-node to
the end-node of the top-level activity. The planner handles
this execution selection problem as a variant of a network
searcAhujaet al,, 1993 rooted at the start-node of the TPN
encoding of the top-level activity.

Sear ching the Networ k
Recall that each node of a TPN is either a decision node or
a non-decision node. If a plan includes a non-decision node
with multiple out-arcs, then all of these arcs and their tail
nodes must be included in the plan. If a plan includes a deci-
sion node with multiple out-arcs, then the arcs represéert-al
. . nate choices, and the planning algorithm selects exacty on
6 Planning using TPNs to be included in the plan.
After compiling an RMPL program into a TPN, Kirk’s plan- Network search completes only when all paths reach the
ner uses the TPN to search for an execution that is both conend-node of the top-level activity, and the subnetwork ef th
plete and consistent. The execution corresponds to an ufi-PN, defined by these paths, is temporally consistent. This
conditional, temporal plan. A plan is complete if choicescorresponds to testing consistency of an $échteret al,
have been made for each relevant decision point, it con1991, as discussed in the next section.
tains only primitive-level activities, and all activitiéabeled The first phase of planning is summarized by khedified
Ask(c) have been linked to a Tell(c). A plan is consistent if Network Search algorithnshown below. The set A, is the set
it does not violate any of its temporal constraints or syridol of active nodes, which are those nodes whose paths have not
constraints. The resulting plan is then executed usingltre p yet been fully extended. The sets SN and SA are the sets of
runner described ifiTsamardinogt al, 1999. selected nodes and selected arcs, respectively:

The input to Kirk’s planner is a TPN describing an activ- 1 mdi f i ed- Net wor k- Sear ch(N)
ity scenario. A scenario consists of the TPN for the topdleve2 A = { start-node of N }:
activity invoked and any constraints on its invocation. Thel S - E ft art-node of N};
following TPN invokes Enroute (nodes 1-13). In a parallels Wile ((Ais not enpty)

[0d

choose {A[l1,u1], B[l2,u2]}. Reduces toA[ly,u;] or

3

Blls, us], non-deterministically.

A.stat | A.end

www.manaraa.com

6 Node = Sel ect and remove a member of A Initially, node 1 is selected, which is indicated by its dark

7 I'f (Node is a decision-node) shade, and it is active. In the first iteration, Kirk chooses
8 Arc = Sel ect any unnarked out-arc of Node and . . N

9 Mark Arc and node 1 from the set of active nodes, and since node 1 is not a
10 Add Arc to SA, . decision node, it selects all out-arcs and adds their @illse

1 If (tail of Arc is not in SN) selected and active set. This continues until both node 5 and
12 Add tail of Arc to A and SN,

13 End- | f node 15 are selected:

14 El se

15 For each Arc that is an out-arc of Node

16 Add Arc to SA;

17 If (tail of Arc is not in SN)

18 Add tail of Arc to A and SN,

19 End- | f

20 End- For

21 End- I f

22 . . .

53 If (Oycle-1nduced(SN, SA)) At this po!nt, the mpdlﬂed netw_ork searc_h chooses node 5
24 I'f (Not(Tenporally-Consistent(SN, SA))) from the active set. Since node 5 is a decision node, the algo-
gg EndBf‘fCK”aCK(SNv SA A); rithm must choose either arc (5,7) or arc (5,10). It seleats a
27 End-1 f (5,7) and continues extending until it reaches the follgwin

28 End- Wi | e
29 End- Function

The algorithm extends an active node at each iteration.
Decision nodes are treated by extending the path along one
out arc (lines 8-13), while non-decision nodes are treated b
branching the path and extending along all out arcs (lines 15
20). At the end of each iteration of the main While-loop, the Note that arc (14,2) is selected, forming the cycle, 1-3-4-5
modified network search tests for temporal consistenceglin 7-8-9-6-13-14-2-1, so the algorithm checks for temporakco
24-26). If the test fails, then the search calls Backtrapkf. sistency. In this example, this selected sub-network is tem
line 25, which reverts SN, SA, and A to their states before theporally inconsistent, so the algorithm backtracks to thesimo
most recent decision that has unmarked choices remainingecent decision with open options, which is Node 5. Out-arc
and selects a different out-arc. While for simplicity this e (5,10) has not yet been tried, so it is selected and the path
planation uses chronological backtracking, a wealth ofemor extend to the end-node. Finally a path through arc (15,16) is
efficient search algorithms can be applied. found to the end-node, resulting in the temporally conatste

Note that it is not necessary to check temporal consistencgub-network:
after every iteration of the While-loop, since as long as no
cycles are induced in the network, there is no way for a tem-
poral inconsistency to be induced. Determining whether a
cycle has been created can be done for each arc that is se-
lected by checking whether the arc’s tail node has already
been selected. Since this can be done in constant time, it is
significantly more efficient in practice than testing tengdor) ,
consistency after every iteration, although it doesn’'tamtp ~Checking Temporal Consistency
worst case complexity. To check temporal consistency we note that any subnet of a

Also note that the algorithm stops extending a path wherPlan Network, minus its symbolic constraint labels, forms a
it encounters a node that is already in SN. The fact that thiSimple Temporal Network. Hence temporal consistency can
node is already in SN implies that two concurrent threads obe checked using standard methods for Simple Temporal Net-
execution have merged. works[Dechteret al,, 1991. Recall that an STN is consistent

Finally, after the modified network search completes, theif and only if its encoding as a distance graph contains ne neg
selected nodes and arcs define a set of paths from the sta@tive cyclesDechteret al, 1991. There exist several well

node to the end-node of the top activity. known algorithms for detecting negative cycles in polynaimi
. time. The Bellman-Ford algorithffCormenet al,, 1999 can
Example: Sear ching the Enroute Network be used to check for negative cycle(tfnm) time, wherem

To illustrate the modified network search, we return to theandn are the number of arcs and nodes in the distance graph,
Enroute input network, where node 1 is the start-node andespectively. This algorithm only needs to maintain one dis
node 2 is the end-node: tance label at each node, which takes ofilfn) space. A
variant of this algorithm is used by HSTSluscettolaet al.,
19984 for fast inconsistency detection.

The algorithm we use in the Kirk planner is a variant of
the generic label-correcting single-source shortedt-phgo-
rithm [Ahuja et al, 1993, which takesO(nm) worst-case
asymptotic running time, but performs faster in many situa-
tions. This algorithm also requires only(n) space. Space

www.manaraa.com

precludes a more detailed development. over which the condition is asserted by a Tell constrairgnth

. the open condition is satisfied (i.e., closed), and a cairdal |
6.2 PhaseTwo: Threatsand Open Conditions is drawn from the Tell to the Ask. Open conditions are de-
Symbolic constraints— Ask(c) and Tell(c) — are handledtected simply by scanning through all activites and chegkin
analogous to threats and open conditions in causal linlany Ask constraints. Finding potentially overlapping inte
planningWeld, 1994. Two symbolic constraints conflict if vals is performed using the same method described above for
one is either asserting (by using Tell) or requesting (by usdetecting threats. Once a Tell is found that can satisfy an
ing Ask) that a condition is true, and the second is assertingpen condition, temporal constraints are added so thatithe d
or requesting that the same condition is false. For exampleation of the open condition is contained within the Tellisg'h
Tell(Not(c)) and Ask(c) conflict. An open conditionin a TPN method of closing open asks is also closely related to the way
appears as Ask constraints, which represent the need f@ sorthat the HSTS planner satisfies compatibilifiskiscettolaet
condition to be true over the interval of time represented byal., 19984:
the arc labeled with the Ask constraint. <1, 2> <8, 10>

Tell(c) O
<9, 12>
?end
]

B.stat B.end

Resolving Threats

To detect threats the planner computes the feasible time L hrsiet \ :
bounds for each temporal event (node) in the network, and ' SN
then uses these bounds to identify potentially overlapiping sk(©)
tervals that are labeled with inconsistent constraintseseh

bounds can be computed by solving an all-pairs shortest-pat

problem over the distance graph of the partially completed

plan. Kirk uses the Floyd-Warshall algorithm for computing 7 | mplementation and Discussion
all-pairs shortest paths. We are currently evaluating dohis
algorithm which runs i) (n? log(n) +mn), orO(n? log(n))
if m = 0O(n).

Once these feasible time ranges are determined, the plaﬁ
ner detects which arcs may overlap in time. If there are two,
arcs that may overlap and that are labeled with conflictinge
symbolic constraints, then they are resolved by orderirg th
intervals, if possible.

These interval pairs need to be identified efficiently. Kirk
maintains an interval set data structure for each propwsiti
p that keeps track of all intervals that assert or requirer
its negation. In order to identify threats, the planner nee
only check each interval set for threats. This takisi?)
asymptotic running time, whetds the maximum cardinality
over all interval sets, and performs much better in practice
because the interval sets typically have few elements. More
sophisticated indexing schemes may improve performance
such as interval tree structurgSormenet al., 1994.

<1, 3

>
A

Kirk’'s compiler generates TPN specification files, and igwri
ten in Lisp. Kirk’s planner, written in C++, generates a
lan from the TPN and checks consistency. Kirk's executive,
ased on the remote agent plan runfisamardinost al,
994, takes the resulting partially ordered temporal plan and
xecutes it on the multi-air vehicle simulator. The follogi
table summarizes Kirk’s performance on nominal plans for
several activities within the search and rescue scenatie. T
fully expanded TPN generated from the Group-Search-and-
Rescue activity included 273 nodes. The testing platforis wa
n IBM Aptiva E6U with an Intel 400Mhz Pentium Il proces-
or and 128MB of RAM, running Redhat Linux version 6.1:

Top Activity Nodes Activities Plan Time
Follow(..) 4 1 4 ms
Group-Rescue(..) 27 8 235ms
'Group-Enroute() 112 19 16s

A threat is resolved by introducing temporal constraints. (EIFOUPASR'M',,SS'TO ﬁ73 I ‘;’7 — h404 S b
Each threat consists of two arcs that represent intervals of Olp Ctg"t}{ re(zjerf to the top- e¥eh activity t g a('; was ef-
time that may overlap. To resolve threats we introduce a connd Planned. “Nodes” is the size of the expanded TPN after

straint that forces an ordering between the two activites; s planning. Usually, about half of these were included in the
ilar to promotion and demotion in classical planriwgld, ~ final plan, with the rest corresponding to unselected execu-
1994: tions. “Activities” indicates the number of primitive aciiies

<7,8> <12,15> included in the final plan. Finally, the “Plan Time” gives the
Ask(Not(e)) time that it took for Kirk to generate a plan corresponding to
<14,18> each of these activities.

Kirk offers two sources for efficiency. First, typically an
RMPL program significantly constrains the space of possi-
ble plans considered, in the spirit of hierarchical taskuoek
planners[Erol et al, 1994. Second, the use of TPNs re-

<2.3> .sta A.end

<6,7>

Tell(c)

B start Boend duces online planning to graph search. In the example Kirk
does well with no search guidance up to about 100 nodes. At
Closing Open Conditions this point the time becomes dominated by the time required

An open condition is represented by an arc labeled with arlo compute feasible time bounds for events. This is due to
Ask constraint, which represents the request for a contlitio the use of Bellman-Ford and chronological search. We are
to be satisfied over the interval of time represented by thexploring a reimplementation based on Johnson'’s algorithm
arc. If this interval of time is contained by another intdrva and a more sophisticated search strategy.

www.manaraa.com

The primary contribution of this paper is the Reactive [Blum and Furst, 1997 A. Blum and M. Furst. Fast planning
Model-based Programming Language and the Temporal Plan through planning graph analysigArtificial Intelligence
Network representation. The algorithms presented heng onl 90(1-2):281-300, 1997.
begin to explore RMEL/T_PN—based planning. The fOHOWi”g[Cormenet al,199d T. Cormen, C Leiserson, and
are some example directions for further research. R. Rivest. Introduction to Algorithms MIT Press,

This paper focuses onr{the use OE} TPNs asla Isynthe- Camb., MA, 1990.

sis of causal link plannirigVeld, 1994, temporal plan- .
ning [Muscettola, 1994 and hierarchical task network [Dechteret al, 1991 R. Dechter, . Meiri, and J. Pearl. Tem-
plannindErol et al, 1994. Can methods from graph-based ~ Poral constraint networksilJ, 49:61-95, 1991.
plannindBlum and Furst, 1997; Weld, 1999; Smith and [Erolet al, 1994 K. Erol, J. Hendler, and D. Nau. Htn plan-
Weld, 1999, particularly mutual exclusion relationships, be ning: Complexity and expressivity. IRroceedings of
effectively employed within a TPN? An important element AAAI-94 pages 1123-1128, 1994.
of practical temporal planners in the space domain, such ags-; ;
HSTS Muscero, 199 and MTeTLaorc and Ghal,] et o g aaaag el
1994, is the ability to plan with depletable resources. Can)))
RMPL and TPNs be similarly extended? How can RMPL[Guernicetal,] P.Le Guernic, M. Le Borgne, T. Gauthier,
and TPNs be extended to support decision theoretic planning @nd C. Le Maire. Programming real time applications with
and agile maneuver planning, common to robotic vehicles? ~ Signal pages 1321-1336.

RMPL offers an expressive embedded programming lanfHalbwachset al,] N. Halbwachs, P. Caspi, and D. Pilaud.
guage, by inheriting most of its primitive combinators from The synchronous programming langudgstre pages
the Timed Concurrent Constraint Language (TC&jraswat 1305-1320.

et al, 1994. For example, as with TCC, these primitives 15 ihwachs, 1998N. Halbwachs. Synchronous program-
allow a rich set of operators to be derived for preemption ming of reactive system&luwer Academic, 1993.

and exception handling, similar to those found in embeddef))
languages like Estef@erry and Gonthier, 1992 However, Laborie and Ghallab, 1995°. Laborie and M. Ghallab.

the algorithm presented here performs unconditional plan- Planning with sharable resource constraints Praceed-

ning, and hence only considers the case where exceptions canings of IJCAI-951995.

be prevented. RMPL's ability to express exception handling Muscettolaet al., 199834 N. Muscettola, P. Morris, B. Pell,

mechanisms can best be exploited through the development and B. Smith. Issues in temporal reasoning for au-

of conditional planning algorithms. tonomous control systems. Autonomous Agent4998.
Finally, RMPL allows the programmer to constrain the [\j,scettolaet al, 19984 N. Muscettola, P. Nayak, B. Pell,

family of possible behaviors that the planner considersrwhe ™ ;14 B C. Williams. The new millennium remote agent: To

controlling an embedded system. It is important that this 5 i4lv go where no ai svstem has gone befobetificial
family of behaviors be safe. Embedded languages like Intellégncglos(l-Z):g—):B 1998. g et

EsterelBerry and Gonthier, 1992 LustrdHalbwachset al,)

] and SigndlGuernicet al,] offer a clean semantics, and of- [Muscettola, 1994 N. Muscettola. HSTS: Integrating plan-
fer support for direct machine verification of safety anativ ning and scheduling. In Mark Fox and Monte Zweben,
ness properties. The verification of RMPL programs would ~€ditors,Intelligent SchedulingVlorgan Kaufmann, 1994.
be similar, but requires methods, such as timed automaita ve{Saraswaet al, 1994 V. Saraswat, R. Jagadeesan, and

fication, that support metric constraints and non-deteisnin V. Gupta. Timed Default Concurrent Constraint Program-
ming. J Symb Com2(5-6):475-520, 1996.
Acknowledgments [Smith and Weld, 1999D. Smith and D. Weld. Temporal

, . planning with mutual exclusion reasoning.Pmoceedings
We would like to thank Michael Hofbaur, Tony Abad and the f |3CAI-99 1999.

anonymous reviewers for their invaluable insights. This re . .

search is supported in part by the Office of Naval Researcht Samardinogt al, 1999 I. Tsamardinos, N. Muscettola,

under contract N00014-99-1-1080 and by the DARPA MO- anpl .P. Morris. .Fast transformatlon of temporal plans for

BIES program under contract F33615-00-C-1702. efficient execution. IfProceedings of AAAI-98.998.

[Weld, 1994 D. Weld. An introduction to least commitment
planning. InAl Magazine 1994.

. . _ ~ [weld, 1999 D. Weld. Recent advances in ai planning. In
[Ahujaet al, 1993 R. Ahuja, T. Magnanti, and J. Orlin. Al Magazine 1999.

Network Flows: Theory, Algorithms, and Applications [Williams et al, 2004 B. C. Wiliams, S. Chung, and

Prentice Hall, 1993. V. Gupta. Mode estimation of model-based programs:
[Berry and Gonthier, 1992G. Berry and G. Gonthier. The Monitoring systems with complex behavior. Rroceed-

esterel programming language: Design, semantics and ings of IJCAI-012001.

implementation. Science of Computer Programming

19(2):87 — 152, November 1992.

References

www.manaraa.com

